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Rapid analysis of energetic 
and geo-materials using LIBS

Laser-induced breakdown spectroscopy (LIBS) has been used for 

a wide range of materials analysis applications ever since the 

inception of the term “LIBS” in 19811,2. Specific applications 

include analysis of metal alloys3-6, plastics7-9, ceramics10-12, 

biological material13-16, and geological materials17-20. LIBS is an 

optical spectroscopic technique that uses a focused laser pulse, 

of the order of tens to hundreds of millijoules, to generate a 

microplasma that subsequently vaporizes a small amount of the 

target sample. A dispersive spectrometer and detector is used to 

collect the light from the plasma in order to resolve the signatures 

of the excited atomic, ionic, and some molecular species. A 

selection of books and review articles describe the breadth and 

growth of LIBS materials analysis over the past few decades21-32. 

LIBS has several attributes that make it an attractive tool for rapid 

materials analysis: (i) no sample preparation is required; (ii) it 

provides a real-time (< 1 second) response; (iii) only nanograms 

– picograms of the material is required for production of a usable 

LIBS spectrum; and (iv) relatively simple components (i.e., laser, 

optics, detector, computer, etc.) are used for experiments. This last 

attribute makes LIBS useful for different types of application in 

the laboratory, portable field systems, and standoff analysis. Field-

portable LIBS instruments have been used for many applications, 

including the determination of lead (Pb) in soil and paint33, the 

online sorting of wood34, and the analysis of paints and coatings35. 

LIBS instruments at a distance, or standoff LIBS, have been 

demonstrated at distances up to 100 meters for environmental36, 

industrial37,38, cultural heritage39, and geological applications18,40. 

A typical LIBS experiment (example setup shown in Fig. 1) uses a 

focused laser pulse at the fundamental wavelength from a Nd:YAG 

laser. However, there are numerous studies that have investigated 

The laser induced breakdown spectroscopy (LIBS) technique has been 
used to analyze a diverse array of materials for several decades. LIBS 
is ideal for rapid materials analysis since data can be collected in real 
time with no sample preparation. The coupling of LIBS with multivariate 
analysis has increased in recent years and allows for rapid processing 
of spectral information for qualitative or quantitative analysis. We will 
discuss several examples of how LIBS and multivariate analysis has 
been used to classify geological and energetic materials at the United 
States Army Research Laboratory. It is important to understand the 
parameters that influence the results and the limitations of multivariate 
analysis for LIBS applications.   
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the influence of different laser parameters such as wavelength41,42, 

pulse width (femto-, pico-, nanosecond)43-45, energy46,47, and number 

of pulses48,49. Focusing optics are used to generate the microplasma 

on the sample. Next, collection optics are used to capture the 

emission from the microplasma and direct it towards the collection 

device. Typically, a dispersive spectrometer and an intensified charge 

coupled device (ICCD) are used for detection; however a wide range 

of spectrometers and detectors (CCDs, electron multiplying CCDs, 

photomultiplier tubes50,51 and photodiode arrays52-54) have been 

employed. 

The most common types of analysis performed using LIBS spectra 

are qualitative classification and quantification. A typical LIBS spectrum 

is made up of multiple emission lines primarily due to atomic species. 

The specific wavelength of the atomic emission line corresponds to a 

particular element. Most elements have multiple emission lines: iron for 

example has hundreds. Fig. 2 shows the LIBS spectrum of a stainless steel 

standard reference material (SRM 1155). Multiple atomic emission lines 

of iron are present, as well as chromium and nickel. The nitrogen and 

oxygen atomic emission lines are due to the surrounding atmosphere. 

These can be eliminated by blowing a bath gas across the surface if 

desired. In the inset, we focus on a small section of the spectrum from 

335 – 375 nm that contains multiple atomic emission lines due to 

iron, nickel, and chromium. LIBS used in conjunction with broadband 

detectors (ultraviolet [UV] – visible [VIS] – near-infrared [NIR] spectral 

range) can determine the elemental composition of any target 

material since every element on the periodic table has characteristic 

atomic emission lines in the UV-VIS-NIR spectral range. Therefore, an 

elemental inventory can be obtained of any sample of interest using a 

LIBS spectrum. Beyond tabulating the elements present in a sample, the 

intensity of an atomic emission line can be correlated to the amount 

of the material present in the sample. LIBS has been used in numerous 

quantification studies for steel55-57, aluminum alloys58-62, bronze6,63, 

ceramics10, surface mapping13,64, and many more applications. In 

Fig. 1 LIBS experimental setup (a) Nd:YAG laser, (b) focusing optics, (c) 
pierced mirror, (d) microplasma, (e) sample, (f) collection optics, and (g) 
spectrometer/detector.

(a)

(b)

(c)

(d)(e)

(f)

(g)

Fig. 2 Broadband LIBS spectrum of stainless steel (NIST standard reference material 1155). Inset. Sub-section of steel spectrum from 335 – 375 nm.
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general, limits of detection (LOD) for LIBS are in the parts per million 

(ppm) range. However, the LOD value of a given element will depend on 

experimental parameters such as laser energy, surrounding matrix, and 

the experimental setup. Reported LODs in the literature are intrinsically 

related to the particular application and experimental apparatus described 

in the article.

There are several difficulties associated with the collection and 

analysis of LIBS spectra. Even though the experimental setup of a LIBS 

system is relatively simple, the non-linear processes underlying the 

formation of the microplasma are highly complex. Therefore, the shot-

to-shot variation is an inherent issue with all LIBS experiments due 

to the laser material interaction. The properties of the material being 

interrogated by the laser will influence the LIBS signal due to matrix 

effects. In addition, if the material is heterogeneous, the microplasma 

will sample regions in the material with different compositions. 

Identifying molecular compounds with similar elemental composition 

is also difficult since LIBS is fundamentally an elemental technique. 

Some molecular information, such as relative stoichiometries, can be 

determined from relative atomic peak emission intensities, but it is 

not a straightforward analysis65. In addition, each LIBS experimental 

setup is intrinsically tied to the application for which it is designed. 

The data analysis method must be revisited if the experimental setup 

or application is altered. LIBS is a versatile tool for materials analysis, 

capable of providing large amounts of data quickly using a relatively 

simple experimental setup. However, obtaining useful information and 

analyzing that information requires careful experimentation and an 

understanding of the underlying system being investigated. 

Analysis of LIBS spectra using multivariate 
analysis
High-resolution, broadband LIBS spectra can contain as many as 

100 000 variables as seen in the LIBS spectrum of stainless steel 

shown in Fig. 2. These variables include atomic emission lines, ionic 

emission lines, molecular bands, and background emission. Depending 

on the application, multiple spectral regions may need to be analyzed 

simultaneously. The ability to quickly process all of the data in a 

useful manner is a challenge. Multivariate analysis is a technique used 

to reduce or compress the spectral data into fewer combinations of 

variables that still retain the essential information describing the data 

set66-68. Furthermore, the essential information must then be extracted 

in a manner that can be easily displayed. The coupling of LIBS spectral 

data with multivariate analysis techniques has been a major advance 

for LIBS analysis of materials over the past decade. The increase in 

LIBS publications using multivariate techniques over the last few years 

is shown in Fig. 3. The use of multivariate analysis with LIBS for data 

analysis includes quantitative analysis and classification. 

One of the earliest combinations of LIBS with a multivariate 

technique utilized a principal components regression (PCR) calibration 

model to determine detection limits of trace heavy metals in soils, 

sands, and sewage sludge69. Another early study used neural networks 

to classify polymers based on nine spectral regions of interest in 

the LIBS spectra7. Multivariate techniques for classification and 

quantification have been used for a variety of LIBS material analysis 

applications. Amador-Hernandez et al. used principal components 

analysis (PCA)70 to obtain sample composition plots of screen-printed 

electrodes71. Another classification technique, soft independent 

modeling of class analogy (SIMCA)72, was used to differentiate 

between bacterial spores, molds, pollens, and nerve agent simulants73. 

Partial least squares discriminant analysis (PLS-DA)74 was used to test 

the feasibility of classifying rocks based on LIBS spectra for eventual 

use on the Mars Science Laboratory rover75. LIBS spectral data was 

used for the multivariate calibration technique partial least squares 

(PLS) regression in order to quantify the amount of gold and silver in 

gold-silver-copper alloys76. In addition to trace heavy metal analysis, 

PCR has been used to measure the composition of iron ore samples77.

At the US Army Research Laboratory (ARL), we have primarily used 

the multivariate techniques PCA,70 SIMCA,72 and PLS-DA74 to classify 

hazardous materials such as explosives, biological and chemical weapon 

simulants73,78-83. PCA is an unsupervised multivariate technique that 

compresses large data sets in order to extract useful information by 

finding combinations of variables that describe major trends in the data. 

The large data set is reduced to weighted sums of the original variables. 

These weighted sums, or scores, are used to describe variations in 

the data. Since PCA is unsupervised, it seeks to describe the overall 

variation in the data. This may not be useful for differentiating between 

different classes of samples. Therefore classification techniques such 

as SIMCA and PLS-DA are more useful for describing data sets that 

consist of many measurements of several samples or classes. A SIMCA 

model consists of a collection of PCA models. Each PCA model within 

the SIMCA model describes a particular sample type or class from 

the data set. SIMCA incorporates the properties of PCA models with 

Fig. 3 The number of LIBS publications that utilize multivariate analysis.
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information about the types of classes incorporated in the sample data 

set. The SIMCA model is then used to determine the nearest class for 

unknown test samples. For material analysis performed at ARL, we have 

found that PLS-DA offers the best classification results83. PLS-DA is a 

supervised, inverse least-squares discrimination method used to classify 

samples. In PLS-DA, the predictor variables or latent variables (LV) are 

generated from the input variables to determine the maximum variance 

between each sample class, unlike other techniques such as PCA and 

SIMCA. PLS-DA maximizes the inter-class variance while minimizing the 

intra-class variance. For LIBS this is important due to the inherent shot-

to-shot variability. If the variance in shot-to-shot variability approaches 

the inter-class variance, then unsupervised techniques like PCA will not 

be able to separate the different samples. The PLS-DA model calculates 

the probability that a test sample belongs to a particular class in the 

model. Parameters that will influence model performance include the 

chosen spectral regions of interest, the types of samples in a class, the 

number of classes, and the number of latent variables. It is important to 

determine the variables that most contribute to the separation between 

classes in the model.  This will assure that the separation is due to 

the physical or chemical properties of the underlying system. Further 

iterative testing with independent test sets are needed to optimize the 

model. 

 At ARL, we have used LIBS to qualitatively analyze a wide variety of 

materials. We have analyzed metals to determine the trace impurities 

in aluminum alloys, the composition of steel parts, and solder 

compositions. We have used LIBS to analyze thermoplastic polymers84, 

painted surfaces84, and plastic land mine casings85,86. In this paper, 

we will focus in detail on implementation of multivariate analysis to 

characterize and classify geomaterials and explosive materials at ARL. 

Even though we are focusing on two types of material of interest to 

ARL, the methods we describe can be applied to all types of material 

classification applications with LIBS.

Materials analysis at ARL
Geomaterials
Using LIBS to analyze geomaterials at ARL began with the desire to 

detect lead contamination in soil from military installations33. The 

potential of LIBS as a field portable instrument for in situ geochemical 

analysis has been explored19,87. More recently, LIBS spectra were 

collected from a wide variety of geomaterials, including garnet samples 

collected worldwide88, obsidian samples from the southwestern United 

States89, and a survey of carbonates, fluorites, silicate rocks, and soils40. 

In general, all of the geomaterials analyzed with PLS-DA and LIBS were 

classified correctly by the most optimized multivariate model. 

The garnet samples consisted of six different types that could 

be discriminated based on their composition. Interestingly LIBS 

demonstrated promise for identifying the geographic origin of garnets 

of the same type. Broadband spectra of each garnet type were used 

as variable inputs for the PLS-DA models88. It was assumed that the 

PLS-DA model would use the emission wavelengths that were most 

capable of separating the six garnet types. Subsequent analysis of the 

model using variable importance in projection (VIP) scores confirmed 

this assumption. The VIP scores are used to determine how much each 

variable in a model contributes to the separation between the classes. 

Generally, a variable with a VIP score greater than 1.0 is important to 

a model66,90. In addition, to determine what variables are influencing 

the classification in a particular model, the variables that do contribute 

to classification should have physical meaning for the system being 

investigated. The VIP scores from the composition model and the 

origin models are displayed in Fig. 4. In this case, the major variables 

that contribute to classification correspond to the expected chemical 

properties. For the classification of the six garnet types based on 

composition, atomic spectral intensities due to the major elements 

in each garnet composition (Ca, Mg, Al, Fe, Mn, Cr) were responsible 

for the separation between the classes. For origin determination, 

atomic spectral intensities from contaminants and impurities 

(Na, K, Li, H), likely associated with surrounding environment, were 

largely responsible for the separation. The variables that most influence 

classification are dependent on how the samples are classified in 

a particular multivariate model. In this case, we observe the most 

influential variables for the model based on composition classification 

differs from the most influential variables for the models based on 

geographical origin classification.

The obsidian samples were collected from multiple sites at the 

Coso Volcanic Field (CVF) in California and single sites at four other 

locations89. Remus et al. constructed multiple PLS-DA models to 

analyze different facets of the sample set, primarily to determine the 

provenance of each sample. Broadband spectra were compared to 

pre-selected atomic emission intensities and atomic emission intensity 

ratios from the LIBS spectra as variable inputs. Minimal differences 

Fig. 4 VIP scores for PLS-DA models based on composition and origin of garnets. 
The twelve elements are the most important for garnet classification. The error 
bars indicate two standard deviations.
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in model performance were found for this application. In a study of 

the subset of obsidians collected from CVF, models were constructed 

based on eight different collection sites, i.e., each collection site was 

represented by a class in the model. However, these models were 

outperformed by subsequent PLS-DA models consisting of four classes 

based on geological evidence that grouped some of the sites together. 

The obsidians were ~70 – 80 % correctly classified based on the 

models that grouped sites together based on geography. By contrast, 

the obsidians were only classified correctly ~40 – 50 % of the time 

based on the models that used the eight different sites as classes. This 

result demonstrates the importance of designing and constructing a 

model based on the actual properties of a set of samples.

Finally, multivariate analysis was used on a series of geomaterials: 

carbonates, fluorites, silicate rocks, and soils, in order to classify 

samples. In this case, Gottfried et al.40 used several different 

experimental configurations to collect spectra of the geomaterials: 

single pulse LIBS, double pulse LIBS, and standoff LIBS. An example 

of LIBS spectra collected from the same obsidian sample using each 

experimental configuration is shown in Fig. 5. As expected, the spectra 

have different features and intensities due to differences in laser 

intensity, spectrometer response, and light collection optics. These 

differences clearly illustrate that any multivariate predictive model 

created from data from one experimental configuration cannot be 

used successfully with another experimental setup.  However, excellent 

classification was achieved for each of the geological sample groups 

studied as long as the multivariate models designed for a particular 

experimental setup were used. 

Explosives
The primary focus of LIBS at ARL has been on the detection of 

explosive residue and the subsequent discrimination from benign 

background clutter. This is a challenging problem since the majority 

of military explosives are organic and thus only contain carbon, 

hydrogen, oxygen, and nitrogen. These same elements can be 

present in non-explosive interferents and substrate materials making 

discrimination and classification difficult. In addition, since trace 

amounts of sample are being interrogated, weaker elemental emissions 

from the LIBS spectra are expected. Both laboratory and standoff 

experimental configurations and several multivariate techniques 

have been used to classify materials as either explosive materials or 

as interferents based on LIBS spectral signatures. The initial coupling 

of LIBS with multivariate analysis at ARL involved using principal 

components analysis (PCA) to determine the feasibility of separating 

cyclotrimethylenetrinitramine (RDX) from diesel fuel79. Gottfried et al. 

used a standoff LIBS instrument to collect LIBS spectra from a variety 

of explosive and non-explosive samples83. Several multivariate 

techniques including linear correlation, PCA, SIMCA, and PLS-DA were 

used to determine if a sample was an explosive or a non-explosive. 

Fig. 5 Broadband LIBS spectra of a snowflake obsidian silicate acquired from three separate LIBS systems, (a) standoff double-pulse system at 25 meters, (b) 
laboratory double-pulse system, and (c) laboratory single-pulse system. The most intense emission lines for the elements present in the LIBS spectra are identified; 
other emission lines that are not labeled are lower intensity lines of the same elements.

(a)

(b)

(c)
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PLS-DA was determined to be the most effective analysis technique for 

correctly classifying test samples as either explosive or non-explosive, 

including explosives and interferents that were not in the model and 

mixtures of explosives and interferents83. 

De Lucia et al. constructed PLS-DA models based on LIBS spectral 

signatures collected at standoff distances of 20 and 30 meters of RDX, 

dust, oil, and blank substrate81. A typical standoff, broadband LIBS 

spectrum of RDX is shown in Fig. 6. Multiple test samples, including 

three types of explosives, four interferents, several different mixtures 

of explosives and interferents, and samples collected at 50 meters were 

tested against the optimized PLS-DA model. The number of individual 

test samples that classified as explosives is displayed in Table 1. Overall 

the model performed well against samples collected at 20 and 30 

meters with an 87 % true positive rate (TPR) and a 1.2 % false positive 

rate (FPR). The trace fingerprints and mixtures were the poorest 

performers for explosives determination. Since, the mixtures were 

heterogeneous, the microplasma might not interrogate any explosive 

at all for some of the test shots. The ability to prepare samples in 

such a way that one would know the exact sample composition in 

the microplasma is difficult, especially for mixtures, but it would be 

beneficial for model building and validation. In addition, the model 

performed poorly against the test set collected at 50 meters, 15 % 

TPR and 8 % FPR. Originally, the standoff instrument was designed 

with the intent of collecting spectra out to 30 meters. So at 50 meters, 

the spectra quality will be obviously diminished. Subsequently, a 

new PLS-DA model was constructed using input variables from LIBS 

spectra collected at 50 meters instead of 20 – 30 meters. This model 

Fig. 6 Broadband LIBS spectra of RDX obtained at 20 meters with a double-pulse standoff LIBS system. Labeled emission lines of compositional elements 
(C, H, N, O) and impurities (Ca, Na, K).

Table 1 Results from PLS-DA model for determining if a 
test sample belongs to the explosive class.

Samples at 20 – 30 meters # classified as explosives

RDX 69/70

RDX trace fingerprints 38/50

TNT 50/50

Comp-B 50/50

RDX+ road dust 201/250

RDX+oil 195/225

True Positive Rate 87 %

House dust 1/50

Fingerprints 0/100

Oil+ road dust 3/150

Oil 0/10

Road dust 0/10

False Positive Rate 1.2 %

Samples at 50 meters # classified as explosives

20 – 30 meter PLS-DA model

RDX+ road dust 3/20        TPR 15 %

Oil+ road dust 3/18          FPR 8 %

Fingerprints 0/20

50 meter PLS-DA model

RDX+ road dust 16/20        TPR 80 %

Oil+ road dust 1/18          FPR 8 %

Fingerprints 2/20
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was tested against a validation sample set that included additional 

spectra collected at 50 meters and improved the TPR to 80 %. These 

experiments demonstrated the importance of knowing the underlying 

composition of the test samples as well as experimental parameters 

such as distance to target when validating a model. It is also essential 

to understand the limits of the LIBS instrumentation when building a 

robust predictive model for a particular application.

In the first study of its kind, Gottfried et al. developed a PLS-DA 

model to test the ability to discriminate explosive residues from 

interferents on a variety of surfaces91. The PLS-DA model was based on 

LIBS spectral signatures from a small set of residues: RDX, oil, and dust, 

placed on six different surfaces including aluminum, white rubber, red 

silicone, wood, cardboard, and travertine. A validation set composed 

of the residues on each surface was used to test the model returning 

a true positive rate (TPR) of 88.6 % and a false positive rate (FPR) of 

12.7 %. A second validation set that included the explosive residues 

on surfaces not included in the model (tan silicone, clay tile, slate, and 

blue plastic) was also used to test the model. The classification of the 

explosive on the tan silicone and the slate surface performed poorly 

(TPR of 56.7 % and 5 % respectively). For this particular model and LIBS 

system, it is important to understand the limits of the application. Only 

a certain set of surfaces can be interrogated for explosive residues using 

this particular model. Gottfried et al. also showed that the model could 

be altered in order to incorporate residues on slate.  Input variables 

collected from LIBS spectra of the various residues on slate were added 

to the model. Subsequent analysis of the new model using the explosive 

on slate validation set increased the TPR from 5 % to 50 %. These 

results demonstrated that LIBS and multivariate analysis can classify 

successfully as long the boundaries and limitations of the model and 

LIBS system are clearly defined.

These results have shown the feasibility of using LIBS and 

multivariate analysis to separate explosive residues from non-explosive 

interferent materials based on the chemical composition of explosives. 

The TPR and FPR values described above are useful for comparing 

different models and testing the feasibility of discriminating between 

explosives and non-explosives. However, as predictive values for 

describing how well LIBS can detect trace explosive residues, further 

refinement of the model and quantifying the trace residues would be 

necessary. The results from any of the PLS-DA models are dependent 

on experimental configurations, model input variables, and model 

parameters. It is also observed that while the multivariate models can 

correctly classify some samples not included in a model, other samples 

not defined in the model will be misclassified. In order to define 

the scope of materials a model can successfully classify, it must be 

optimized by iteratively testing with independent validation sets that 

include samples identical to those used as model inputs, similar samples 

to those used as model inputs, and samples not included in the model.

Conclusions and discussions
In the field of LIBS, a wide range of materials for many diverse 

applications have been analyzed demonstrating its versatility. LIBS has 

been used for capturing a simple inventory of a material’s elemental 

composition and for more complex quantitative and classification 

analysis. Rapid analysis of samples is one of the reasons LIBS is an 

ideal technique for materials analysis. The collection of numerous 

high-resolution, broadband spectra can be achieved quickly since data 

collection occurs in real time and no sample preparation is required. In 

order to get real time analysis such as classification or quantification, 

the high dimensional data set acquired from a LIBS spectrum must 

be processed in a timely manner. For this reason, we expect research 

coupling multivariate analysis with LIBS to continue to increase in 

the future. Multivariate analysis can process large data sets in a 

computationally efficient manner by reducing high dimensional data to 

lower dimensional factors that describe the variance between sample 

sets. A predictive model, derived from LIBS spectra, is developed to 

elucidate information about a sample set based on its LIBS spectral 

signatures. Once an effective predictive model is produced, it can 

rapidly return the desired information about the sample set. The 

major challenge is producing an effective predictive model that is both 

accurate and robust.

One of the most important aspects of a predictive model is the 

quality of the data used to populate the model. The predictive ability 

of the model is entirely dependent on having a high quality set of data 

that is representative of the system being investigated. For building a 

model based on LIBS spectra, the spectra should be representative of 

the system being studied and classed together in a way that is aligned 

with the underlying physical or chemical properties of the system. 

Having an understanding of the composition of a sample whose LIBS 

spectra will populate a predictive model is desirable. Once the model 

is populated with high quality data, the variable inputs responsible for 

separation between the classes need to be determined to ensure that 

the separation is due to the underlying chemistry or physical properties 

of the system. Finally, the model needs to be iteratively tested and 

optimized with independent data sets that include a wide range of 

samples that could be encountered for a particular application. Once 

the multivariate model has been developed, the true potential of LIBS 

as a rapid, versatile sensor technique can be achieved.

Instrument citation
LIBS system, LIBS-SC, Ocean Optics Inc
Big Sky CFR200 laser 
7- channel LIBS2500+ spectrometer 

LIBS system developed by ARL in conjunction with Ocean Optics Inc 
and Applied Photonics Ltd
Double-pulse laser source, Quantel Brilliant Twins 
14˝ telescope, Meade LX200GPS 
Custom made three-channel gated CCD spectrometer, Ocean Optics Inc
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The coupling of LIBS with multivariate analysis will continue 

to expand for materials analysis, especially into industrial and 

field applications where rapid analysis is essential. Even though 

this manuscript focused on materials of interest to the Army, the 

advantages and limitations of multivariate analysis described can 

be applied to all types of material analysis. As the development of 

turn-key LIBS instruments for materials analysis continues to grow, 

it is important to define the capabilities of each instrument, not only 

in terms of the LIBS hardware parameters but also in terms of the 

application and analysis software parameters and limitations.  
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